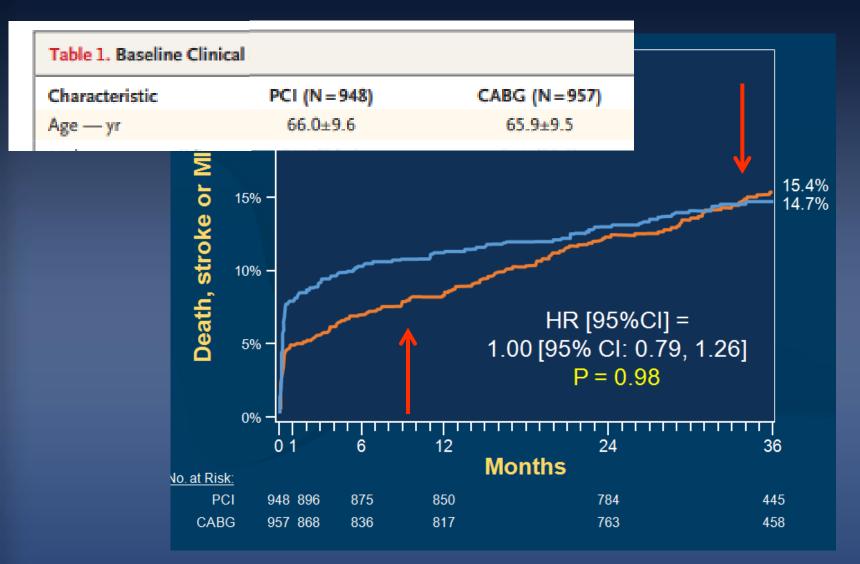
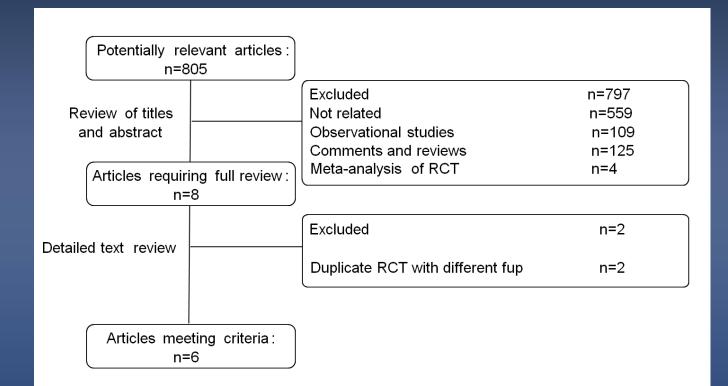
Updated RCT Long-term Data and Meta-analyses for LM Revascularization

> Tullio Palmerini University of Bologna Italy

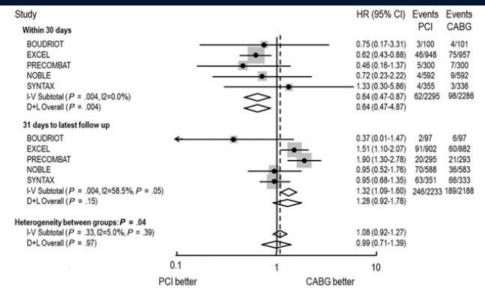


EXCEL: 3-year follow up

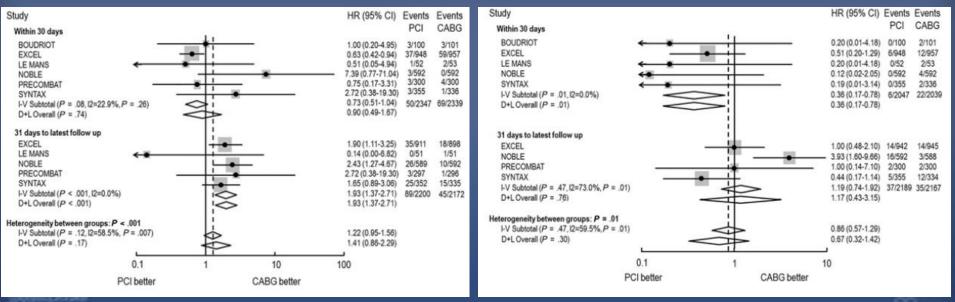


Stone et al; nejm 2016

Clinical outcomes with percutaneous coronary revascularization vs coronary artery bypass grafting surgery in patients with unprotected left main coronary artery disease: A meta-analysis of 6 randomized trials and 4,686 patients

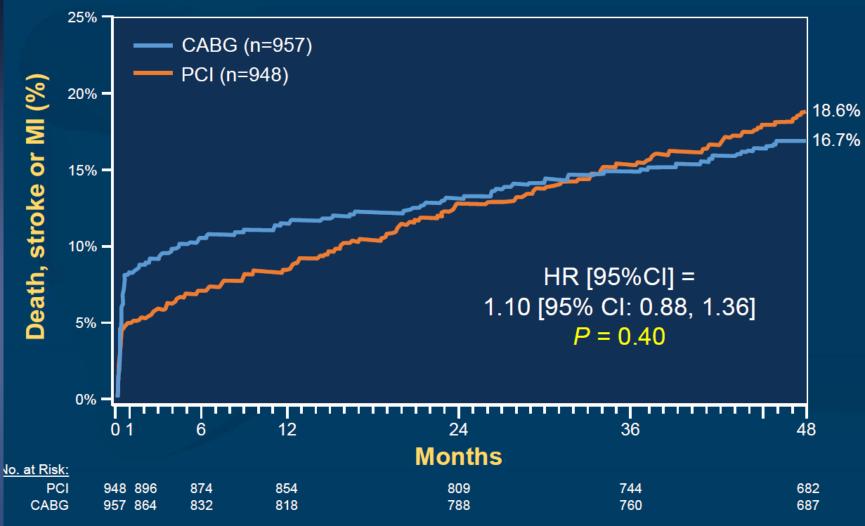


Palmerini et al; Am Heart J 2017


CrossMark

Death, MI, stroke

Myocardial infarction


Stroke

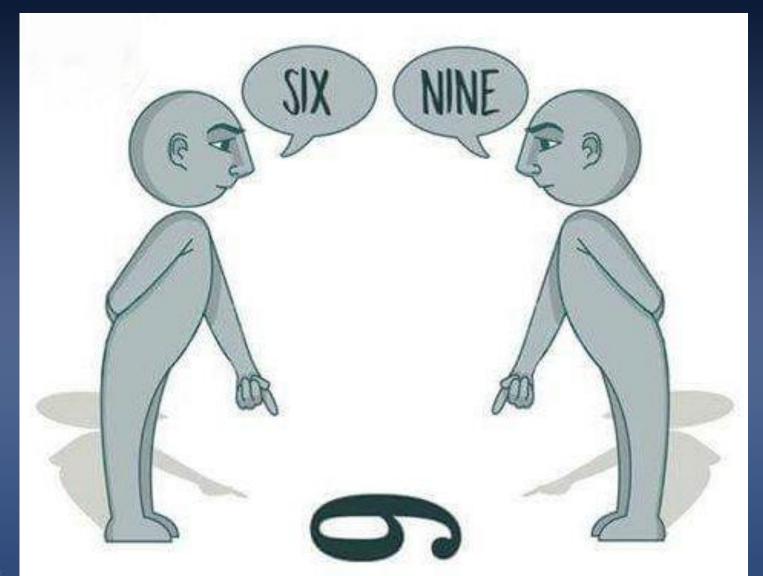
TCTAP 2019

Palmerini et al; Am Heart J 2017

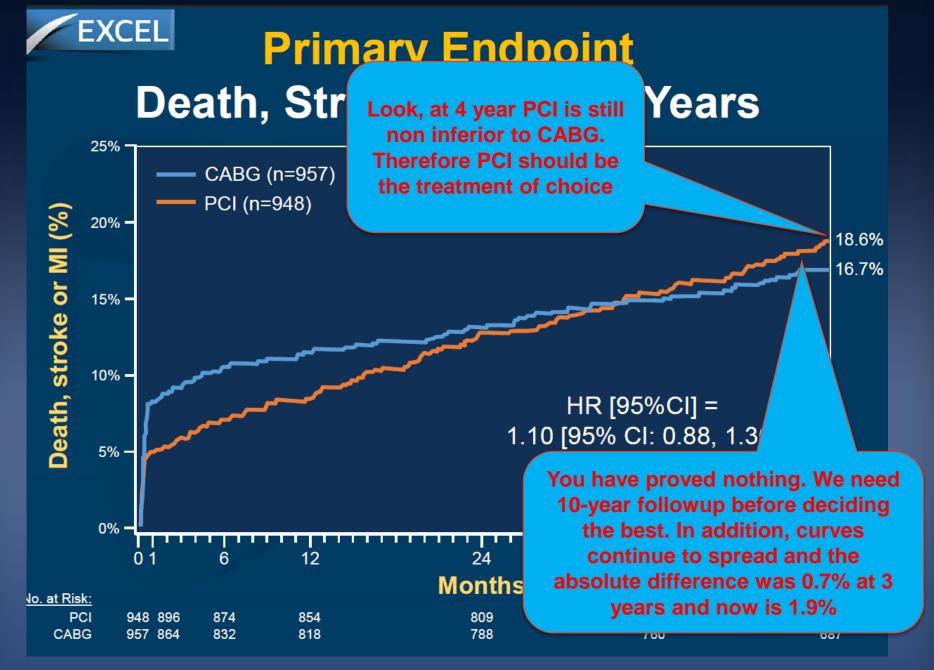
EXCEL Primary Endpoint Death, Stroke or MI at 4 Years

Stone, TCT 2018

Subgroup	PCI (N=948)	CABG (N=957)	HR [95% CI]	Favors Favors PCI CABG	P (Int)
All patients	18.6%	16.7%	1.10 [0.88, 1.36]	- <mark>-</mark>	
<u>Age (median cutoff)</u> - ≥67 years	22.7%	17.4%	1.31 [0.98, 1.76]		
- <67 years	14.8%	15.9%	0.89 [0.64, 1.23]		0.09
Sex					
- Male - Female	17.3% 23.0%	16.5% 17.3%	1.01 [0.78, 1.30] 1.40 [0.91, 2.16]		0.20
Diabetes mellitus					
- Yes - No	24.4% 16.5%	21.7% 14.8%	1.10 [0.76, 1.59] 1.09 [0.83, 1.43]		0.98
Chronic kidney diseas	se				
- eGFR ≤60 ml/min - eGFR >60 ml/min	28.1% 16.7%	22.0% 15.5%	1.30 [0.82, 2.08] 1.05 [0.81, 1.34]		0.42
Geographic location					
- North America	20.3%	14.6%	1.40 [0.99, 2.00]		0.20
- Europe - Other	18.0% 9.6%	17.6% 22.2%	1.00 [0.75, 1.33] 0.37 [0.08, 1.21]	< 	0.30
				0.1 0.5 0.8 1 1.5 2	ר 5
				Harard Datia (059/ CI)	


Adjudicated outcomes at 4 years

	PCI (n=948)	CABG (n=957)	HR [95%CI]	P-value
Death, stroke or MI (1° endpoint)	18.6%	16.7%	1.10 [0.88, 1.36]	0.40
- Death	10.3%	7.4%	1.39 [1.02, 1.89]	0.04
- Definite cardiovascular	4.3%	3.6%	1.17 [0.74, 1.86]	0.50
- Definite non-cardiovascular	5.3%	3.3%	1.61 [1.01, 2.56]	0.04
- Undetermined cause	1.1%	0.7%	1.49 [0.53, 4.19]	0.45
- Stroke	2.6%	3.3%	0.76 [0.44, 1.31]	0.32
- MI	9.5%	8.8%	1.05 [0.77, 1.42]	0.76
- Peri-procedural	3.9%	6.1%	0.65 [0.43, 0.98]	0.04
- Spontaneous	5.7%	3.2%	1.77 [1.12, 2.82]	0.01
- STEMI	1.9%	2.8%	0.65 [0.35, 1.19]	0.16
- Non-STEMI	7.8%	6.3%	1.22 [0.86, 1.72]	0.26


Stone, TCT 2018

Rashomon effect

TCTAP 2019

Stone, TCT 2018

Com

Adjudicated outcomes at 4 years

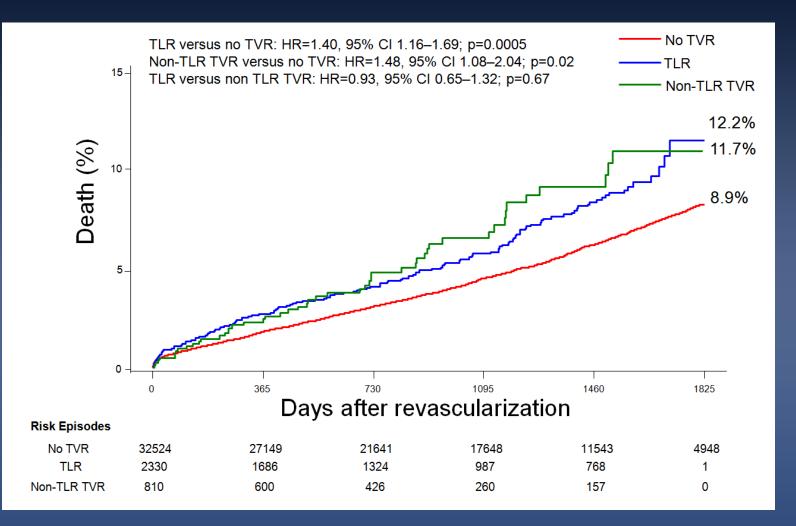
	Look, this is another proof that CABG reduces mortality compared to		HR [95%CI]	P-value			
Death, stroke or N	PCI		10 [0.88, 1.36]	0.40			
- Death		10.370	7.4%	1.39 [1.02, 1.8 9]	0.04		
- Definite cardiovascular		4.3%	3.6%	1.17 [0.74, 1.86]	0.50		
- Definite non-cardiovascular		5.3%	3.3%	1.61 [1.01, 2.56]	5 74		
- Undetermined cause		1.1%	0.7%	1.49 [0.53, 4.19]	-		
- Stroke		2.6%	3.3%	0.76 [0.44, 1.31]			
- MI		9.5%	8.8%	1.05 [0.77, 1.42]			
- Peri-procedural		3.9%	6.1%	0.05 10.40.0.001			
- Spontaneous		5.7%	Thi	This definetly the play of chance			
- STEMI		1.9%	e peca	because cardiac mortality is simila and the difference is entirely driver by non-cardiovascular mortality			
- Non-STEMI		7.8%					

Stone, TCT 2018

Adjudicated outcomes at 4 years

	PCI (n=948)	CABG (n=957)	HR [95%CI]	P-value
Death, stroke, MI or IDR (2° endpoint)	28.0%	22.0%	1.27 [1.06, 1.53]	0.01
- Ischemia-driven revasc (IDR)	16.0%	9.2%	1.80 [1.37, 2.36]	<0.0001
- PCI	13.6%	8.4%	1.65 [1.24, 2.21]	0.0006
- CABG	3.8%	0.8%	4.84 [2.15, 10.92]	<0.0001
All revascularization	16.4%	9.4%	1.79 [1.37, 2.34]	<0.0001
Stent thrombosis, def/prob	1.8%	0.0%	-	<0.0001
- Definite	1.1%	0.0%	-	0.002
- Probable	0.7%	0.0%	-	0.01
- Early (0 - 30 days)	0.7%	0.0%	-	0.008
- Late (30 days – 1 year)	0.1%	0.0%	-	0.32
- Very late (1 year - 4 years)	0.9%	0.0%	-	0.005
Graft occlusion, symptomatic	0.0%	5.9%	-	<0.0001
Definite stent thrombosis or symptomatic graft occlusion	1.1%	5.9%	0.18 [0.09, 0.36]	<0.0001

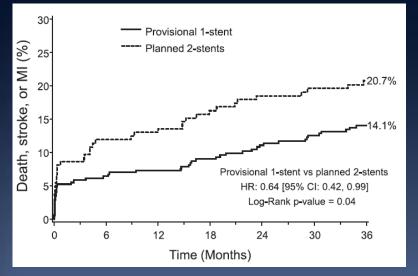
Mortality Following Nonemergent, Uncomplicated Target Lesion Revascularization After Percutaneous Coronary Intervention An Individual Patient Data Pooled Analysis of 21 Randomized Trials and 32,524 Patients


Tullio Palmerini, MD,^a Diego Della Riva, MD,^a Giuseppe Biondi-Zoccai, MD, MSTAT,^{b,c} Martin B. Leon, MD,^{d,e} Patrick W. Serruys, MD, PhD,^f Pieter C. Smits, MD,^g Clemens von Birgelen, MD, PhD,^h Ori Ben-Yehuda, MD,^{d,e} Philippe Généreux, MD,^{e,i,j} Antonio G. Bruno, MD,^a Paul Jenkins, PhD,^e Gregg W. Stone, MD^{d,e}

Simon Makuch analysis of mortality

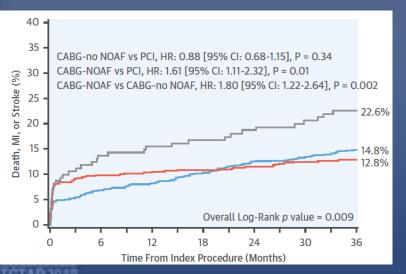
Palmerini et al; JACC Int 2018

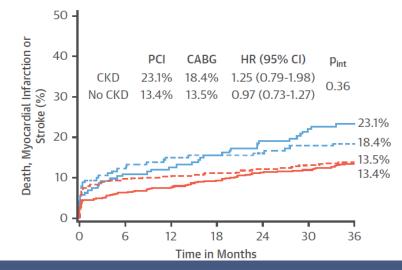
Independent predictors of mortality


	HR (95% CI)	P value
TLR	1.23 (1.04-1.45)	0.02
Non-TLR TVR	1.23 (0.83-1.82)	0.31
MI or ST during fup	4.26 (3.16-5.74)	<0.0001
Age (per 1 year)	1.07 (1.07-1.08)	<0.0001
Diabetes	1.60 (1.46-1.76)	<0.0001
Male sex	1.16 (1.08-1.25)	<0.0001
Previous CABG	1.35 (1.21-1.52)	<0.0001
Previous MI	1.32 (1.23-1.40)	<0.0001
Presentation with MI	1.47 (1.23-1.75)	<0.0001

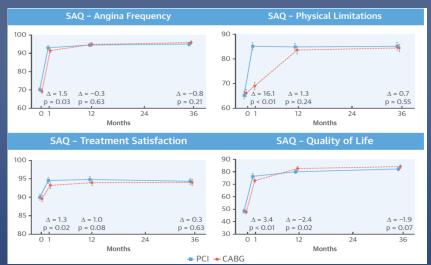
Palmerini et al; JACC Int 2018

TCTAP 2019


Bifurcation technique

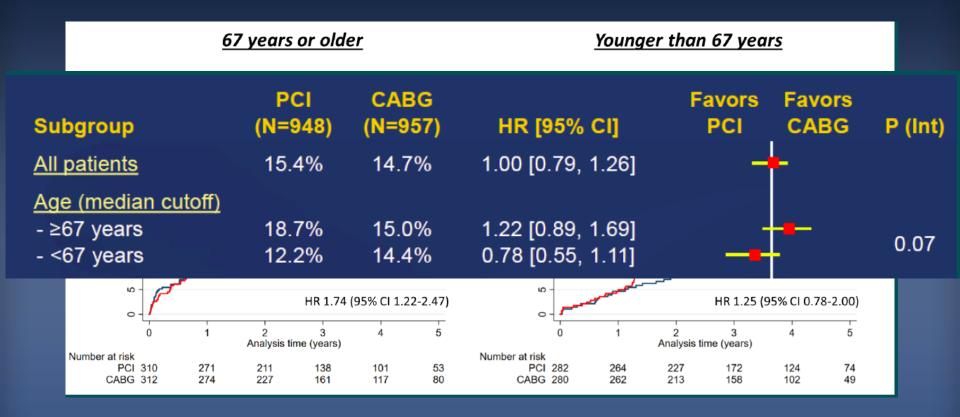

Chronic kidney disease

Kandzari et al; Circ Cv Int 2018


Atrial Fibrillation

Giustino et al; JACC 2019

Quality of life

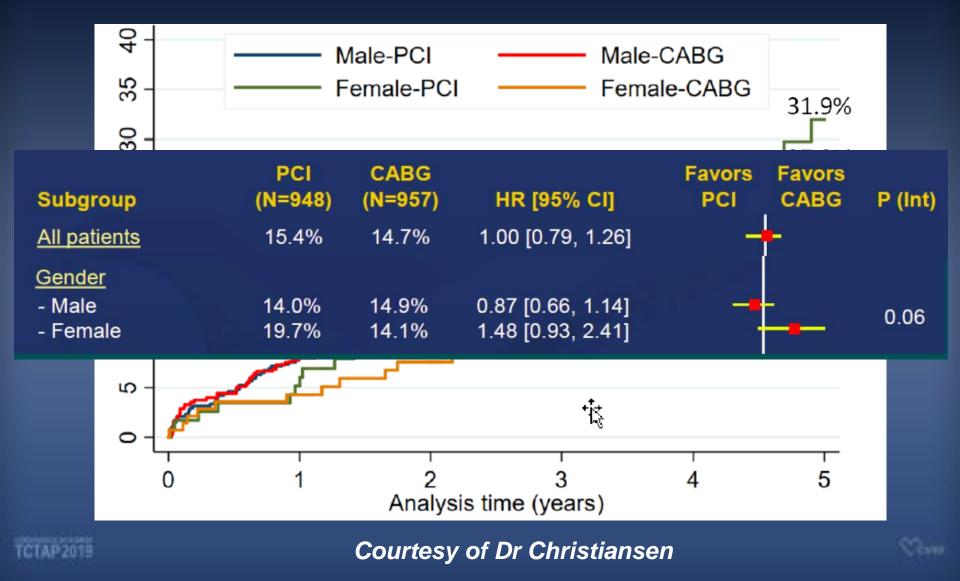


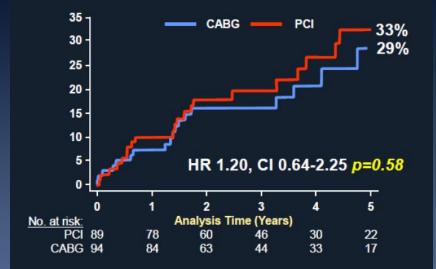
Baron et al; JACC 2018

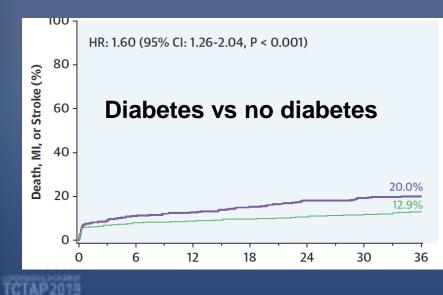
MP201=

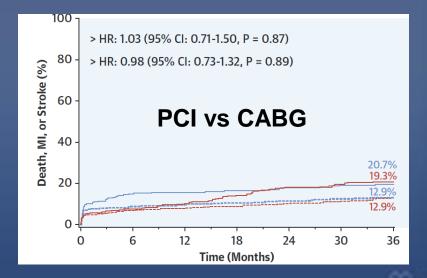
Kosmidou et al; JACC 2018

Updated analyses from NOBLE: analysis stratified by age




Courtesy of Dr Christiansen


Updated analyses from NOBLE: analysis stratified by gender

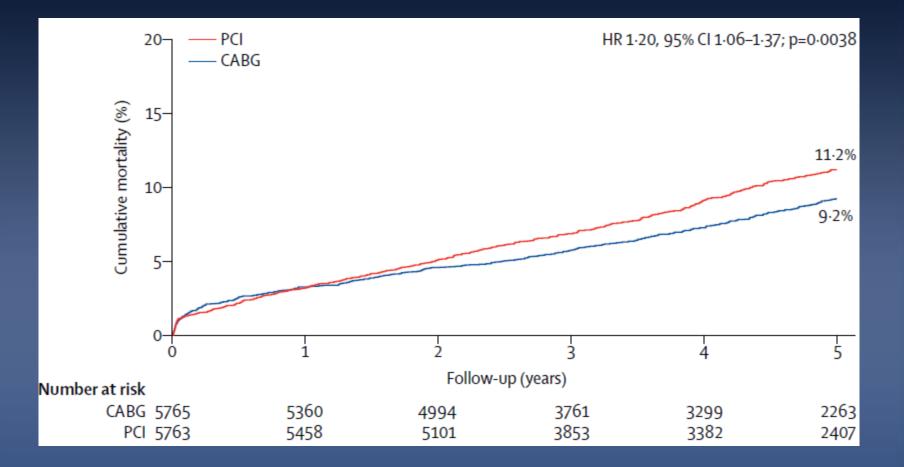


PCI vs CABG in pts with diabetes

Christiansen; TCT 2016

Milojevic et al; JACC 2019

Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data


Stuart J Head, Milan Milojevic, Joost Daemen, Jung-Min Ahn, Eric Boersma, Evald H Christiansen, Michael J Domanski, Michael E Farkouh, Marcus Flather, Valentin Fuster, Mark A Hlatky, Niels R Holm, Whady A Hueb, Masoor Kamalesh, Young-Hak Kim, Timo Mäkikallio, Friedrich W Mohr, Grigorios Papageorgiou, Seung-Jung Park, Alfredo E Rodriguez, Joseph F Sabik 3rd, Rodney H Stables, Gregg W Stone, Patrick W Serruys, Arie Pieter Kappetein

Individual patient data 11 RCTs with 11,518 patients BMS, I generation DES or II generation DES Five year follow up

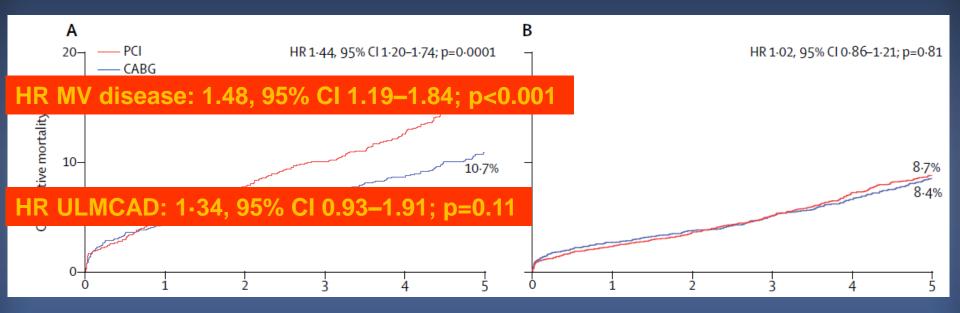
All cause mortality


TCTAP 2019

Left main verus multivessel CAD

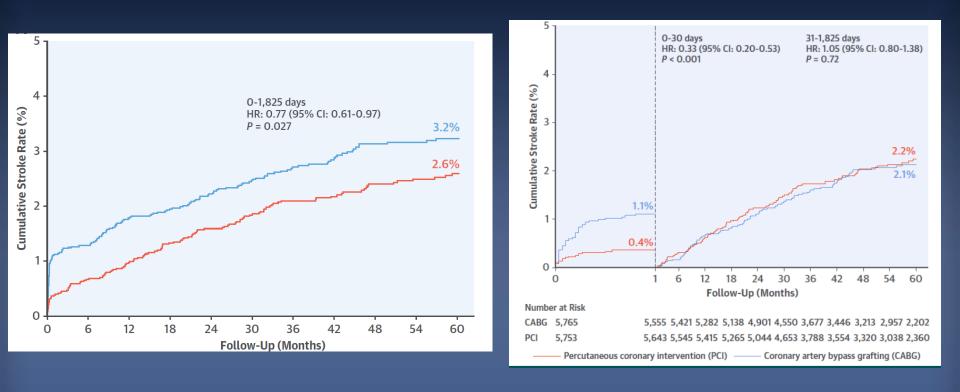
Multivessel CAD

ULMCAD



Diabetes vs no diabetes stratified by MVCAD vs ULMCAD

Diabetes


No diabetes

Stroke with CABG vs PCI

Head et al; JACC 2018

Conclusions I

 Across RCTs and meta-analyses comparing CABG vs PCI for the treatment of ULMCA stenosis no significant difference in mortality, cardiac mortality, MI or stroke is apparent between the two strategies of revascularization up to 5-year follow up.

 PCI, however, is associated with higher rates of repeat revascularization compared with CABG.

Conclusions II

- A significant interatction is apparent between treatment effect and time of follow up, such that the ischemic outcome rates are lower within the first 30 days, and higher from day 31 to the end of follow up with PCI compared with CABG.
- Longer-term follow-up (up to 10 years) is therefore required to determine the relative risk and benefit profile of PCI vs. CABG for the treatment of ULMCA stenosis.

